Karakterizacija recikliranog eksploziva i procena mogućnosti prerade

##plugins.themes.bootstrap3.article.main##

Mirjana Dimić Danica Simić Slavica Terzić Bojana Fidanovski Uroš Anđelić

Apstrakt

U skladu sa trendovima demilitarizacije zastarelog naoružanja i municije, koja predstavlјa teret za svaku vojsku i svaku državu, došlo je do svetskog razvoja tehnologije recikliranja koja omogućava ponovno korišćenje različitih eksploziva, kao i smanjenje potreba za opasanim sintezama ovih supstanci. Odlaganje neperspektivne municije i uništavanje bojevih glava, koje sadrže eksploziv, na otvorenom terenu često može biti skupo i ekološki neprihvatljivo rešenje, što uzrokuje kontaminaciju zemlјišta, vazduha i vode.  U ovom radu ispitane su karakteristike recikliranog trinitrotoluena TNT (r-TNT) u odnosu na čist TNT. TNT dobijen prilikom demilitarizacije starih bojevih glava i toplјenjem različitih sastava eksplozivnih punjenja koja sadrže TNT, testiran je u formi livenih i presovanih punjenja - eksperimentalnih uzoraka. Ispitana je mogućnost obrade tehnologijom livenja i presovanja kako bi se procenila mogućnost praktične primene ovog recikliranog eksploziva. Određena je brzina detonacije i ispitane su fizičke i hemijske osobine r-TNT. Osetlјivosti r-TNT i čistog TNT su upoređene. Preostale nečistoće u recikliranom eksplozivu su ispitane infracrvenom spektroskopijom sa Furijeovom transformacijom (FTIR)  i diferencijalnom skenirajućom kalorimetrijom (DSC), i urađen je test vakuum-stabilnosti. Ispitani r-TNT je pokazao veoma dobre rezultate u svim testovima i može se koristiti u različitim eksplozivnim punjenjima i za različite primene.

##plugins.themes.bootstrap3.article.details##

Kako citirati
DIMIĆ, Mirjana et al. Karakterizacija recikliranog eksploziva i procena mogućnosti prerade. Zbornik Međunarodnog kongresa o procesnoj industriji – Procesing, [S.l.], v. 29, n. 1, p. 87-102, mar. 2017. Dostupno na: <https://www.izdanja.smeits.rs/index.php/ptk/article/view/1937>. Datum pristupa: 13 oct. 2024
Sekcija
Tehnička regulativa, standardizacija i sistem kvaliteta

Reference

[1] DIRECTIVE NUMBER 4715.11 Environmental and Explosives Safety Management on Operational Ranges Within the United States, Depar-tment of Defense, 2007.
[2] DIRECTIVE 1999/92/EC OF THE European parliament and of the Council on minimum requirements for improving the safety and health protection of workers potentially at risk from explosive atmospheres (15th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC) 2000. Official Journal of the European Communities L 23/57, 1999.
[3] Petre,R., Roteriu, T., Zecheru, T., Petrea, N., Bajenaru, S., Environmental long term impact on a Romanian military testing range, Central European journal of energetic materials, 2016., 13(1), p. 3-19.
[4] Dimitrios Kalderis, Albert L. Juhasz, Raj Boopathy, and Steve Comfort, Soils contaminated with explosives: Environmental fate and evaluation of state of the-art remediation processes (IUPAC Technical Report), Pure Appl. Chem., Vol. 83, No. 7, pp. 1407–1484, 2011. doi:10.1351/PAC-REP-10-01-05.
[5] Naomi M. Becker, Fate of selected high explosives in the environment: a literature review, LA-UR-95-1018, CIC-14 REPORT, 1995.
[6] Li Zhuang, Lai Gui, Robert W. Gillham, Richard C. Landis, Laboratory and pilot-scale bioremediation of Pentaerythritol Tetranitrate (PETN) contaminated soil, Journal of Hazardous Materials Volume 264, 2014, p.261–268
[7] Richard Brogle, Paul Rys, Environmentally Friendly Recycling of Hexal in Medium Caliber Ammunition in Industrial Scale, Propellants, Explosives, Pyrotechnics 25, p. 153-157, 2000.
[8] O. Nemec, M. Jungov, S. Zeman, Modification of W/O Emulsions by Demilitarized Composition B, Propellants Explos. Pyrotech. 2013, 38, p. 142–146.
[9] Brogle, P. Rys, E. Rochat, Environmentally Friendly Recycling of hexal in Medium Caliber Ammunition in Industrial Scale, Propellants Explos. Pyrotech. 2000, 25, 153–157.
[10] C. Branco, H. Schubert, J. Campos, Defense Industries: Science and Technology Related to Security – Impact of Conventional Munitions on Environment and Population, Springer, Heidelberg, 2007.
[11] www.prvaiskra-namenska.com/delaboration,
[12] Military Standard of Republic of Serbia, SORS 1133/97 High-Explosive TNT, Trinitrotoluene, Belgrade, Serbia, 1997.
[13] Andreev, K. K., Belyaev, A. F., Teoriya vzryvchatykh veschestv (Theory of Explosives), Oborongiz, Moscow, 1960.
[14] Gol’binder, AI., Laboratorniye raboty po kursu teorii vzryvchatykh veschestv (Laboratory Practice in the Theory of Explosives), Rosvuzizdat, Moscow, 1963, p. 9.
[15] Rosen, A. M., Simmons, H. T., Improved Apparatus and Techniques for the Measurement of the Vacuum Stability of Explosives, U.S. Govt. Rep. AD 226 940, Washington DC, 1959.
[16] Simmons, H. T, The Vacuum Thermal Stability Test for Explosives; Report NOLTR 70-142, U.S. Naval Ordnance Lab., White Oak, Oct. 1970, U.S. Govt. Rep. AD 718 806, Washington DC.
[17] Hauseler, E., Symp. Chem. Problems Connected Stab. Explos., Stockholm, May 1976, Sektion for Detonik och Fiirbrlnnig, Stockholm, p. 34.
[18] Kučera, V., Vetlick´y, B., Investigation of the decomposition processes in single-base propellants under vacuum using minicomputer-controlled automated apparatus, Propellants Explos. Pyrotech. 10 (1985) 65.
[19] Baytos, J. F., High-temperature vacuum thermal stability test of explosives, Los Alamos Nstl. Lab., Sci. Lab. Rep. LA-5829MS, 1975.
[20] Explosives for Civil Uses – High Explosives – Part 3: Determination of Sensitiveness to Friction of Explosives, BS EN 13631-3 : 2004, British Standards Institution, London, United Kingdom, 2004.
[21] Explosives for Civil Uses – High Explosives – Part 4: Determination of Sensitiveness to Impact of Explosives, BS EN 13631- 4 : 2002, British Standards Institution, London, United Kingdom, 2002.
[22] STANAG 4556: EXPLOSIVES: VACUUM STABILITY TEST Brussels: North Atlantic Treaty Organizat, Military Agency for Standardization, 1999