Verifikacija modela energetskih šipova
##plugins.themes.bootstrap3.article.main##
Apstrakt
Opremanje temeljnih Å¡ipova cevovodom za teÄni krug omogucÌava koriÅ¡cÌenje povoljnog toplotnog kapaciteta tla za grejanje i hlaÄ‘enje zgrada po niskim troÅ¡kovima. Energetske performanse energetske gomile u tlu su privremeni fenomen koji zavisi od mnogih parametara, a koji bi se mogao ispitati pomocÌu raÄunarskog modela. Prilog se bavi opisom i verifikacijom novog numeriÄkog raÄunarskog softvera zasnovanog na pojednostavljenom 2D i 2D rota-cionom simetriÄnom modelu provodljivosti toplote koji je razvijen za modeliranje energetskih Å¡ipova.
##plugins.themes.bootstrap3.article.details##
Kako citirati
ŠIKULA, Ondřej et al.
Verifikacija modela energetskih šipova.
Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 51, n. 1, p. 153-157, dec. 2020.
Dostupno na: <https://www.izdanja.smeits.rs/index.php/kghk/article/view/6184>. Datum pristupa: 14 may 2025
doi: https://doi.org/10.24094/kghk.020.51.1.153.
Sekcija
ÄŒlanci
Reference
[1] Ingersoll, L.R., O.J. Zobel and A.C. Ingersoll. Heat conduction with engineering, geological, and other applica-tions. Revised ed. Madison: The University of Wisconsin Press, 1954.
[2] Carslaw, H.S. and J.C. Jaeger. Conduction of heat in solids. 2nd ed. Oxford: Claremore Press, 1959.
[3] Li, Min and Alvin C.K. Lai. Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales. Applied Energy. 2015, 151, 178-191. DOI: 10.1016/j.apenergy.2015.04.070. ISSN 03062619.
[4] Y. Gu and D. O´Neill. Development of an equivalent diameter expression for vertical U-tubes used in ground-coupled heat pumps. 1998.
[5] Zeng, H. Y., N. R. Diao and Z. H. Fang. A finite line-source model for boreholes in geothermal heat exchangers. Heat Transfer. Asian Research. 2002, 31(7), 558-567. DOI: 10.1002/htj.10057. ISSN 1099-2871.
[6] Oravec, J.; Å ikula, O.; Nováková, I. An Evaluation of the Mathematical Models of Energy Piles. Slovak Journal of Civil Engineering, 2020, roÄ. 28, Ä. 1, s. 44-48. ISSN: 1338-3973.
[7] Oravec, J.; Å ikula, O. Computational domain optimization for numerical modeling of energy piles. In JUNIORSTAV 2020 - SbornÃk pÅ™ÃspÄ›vků. 2020. s. 836-841. ISBN: 978-80-86433-73-8.
[8] Cazorla-MarÃn, Antonio, Carla Montagud, José M. Corberán, Francesco Tinti a Sara Focaccia, 2018. Upgrade of the B2G dynamic geothermal heat exchanger model: Optimal location of the ground nodes. In: Proceedings of the IGSHPA Research Track 2018. Stockholm: International Ground Source Heat Pump Association, 2018-9-18, s. 1-9. Dostupné z: doi:10.22488/okstate.18.000013.
[9] Carstens, Sandra a Detlef Kuhl, 2012. Higher-order accurate implicit time integration schemes for transport prob-lems. Archive of Applied Mechanics. 82(8), 1007-1039. ISSN 0939-1533. doi:10.1007/s00419-012-0638-0
[10] Moukalled, Fadl, Luca Mangani a Marwan Darwish, 2016/01/01. The finite volume method in computational fluid dynamics Fluid Mechanics and Its Applications, 113, DOI 10.1007/978-3-319-16874-6]. 113. ISBN 978-3-319-16873-9.
[11] Ondrej Sikula, Josef Plasek, 2015/10/05. Software CalA 4.0 (Calculation Area). version 4.0 Edu. doi:10.13140/RG.2.1.1501.7689.
[12] ANSYS FLUENT Theory Guide, 2011. INC., ANSYS. ANSYS Help System: release 14.0 [online]. Canonsburg, USA: ANSYS, (1) [cit. 2020-12-08]. https://support.ansys.com/portal/site/AnsysCustomerPortal
[13] M. KrajÄÃk, O. Å ikula, Heat storage efficiency and effective thermal output: Indicators of thermal response and output of radiant heating and cooling systems. ENERGY AND BUILDINGS, 2020, vol. 229, 1-14. ISSN: 0378-7788.
[2] Carslaw, H.S. and J.C. Jaeger. Conduction of heat in solids. 2nd ed. Oxford: Claremore Press, 1959.
[3] Li, Min and Alvin C.K. Lai. Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales. Applied Energy. 2015, 151, 178-191. DOI: 10.1016/j.apenergy.2015.04.070. ISSN 03062619.
[4] Y. Gu and D. O´Neill. Development of an equivalent diameter expression for vertical U-tubes used in ground-coupled heat pumps. 1998.
[5] Zeng, H. Y., N. R. Diao and Z. H. Fang. A finite line-source model for boreholes in geothermal heat exchangers. Heat Transfer. Asian Research. 2002, 31(7), 558-567. DOI: 10.1002/htj.10057. ISSN 1099-2871.
[6] Oravec, J.; Å ikula, O.; Nováková, I. An Evaluation of the Mathematical Models of Energy Piles. Slovak Journal of Civil Engineering, 2020, roÄ. 28, Ä. 1, s. 44-48. ISSN: 1338-3973.
[7] Oravec, J.; Å ikula, O. Computational domain optimization for numerical modeling of energy piles. In JUNIORSTAV 2020 - SbornÃk pÅ™ÃspÄ›vků. 2020. s. 836-841. ISBN: 978-80-86433-73-8.
[8] Cazorla-MarÃn, Antonio, Carla Montagud, José M. Corberán, Francesco Tinti a Sara Focaccia, 2018. Upgrade of the B2G dynamic geothermal heat exchanger model: Optimal location of the ground nodes. In: Proceedings of the IGSHPA Research Track 2018. Stockholm: International Ground Source Heat Pump Association, 2018-9-18, s. 1-9. Dostupné z: doi:10.22488/okstate.18.000013.
[9] Carstens, Sandra a Detlef Kuhl, 2012. Higher-order accurate implicit time integration schemes for transport prob-lems. Archive of Applied Mechanics. 82(8), 1007-1039. ISSN 0939-1533. doi:10.1007/s00419-012-0638-0
[10] Moukalled, Fadl, Luca Mangani a Marwan Darwish, 2016/01/01. The finite volume method in computational fluid dynamics Fluid Mechanics and Its Applications, 113, DOI 10.1007/978-3-319-16874-6]. 113. ISBN 978-3-319-16873-9.
[11] Ondrej Sikula, Josef Plasek, 2015/10/05. Software CalA 4.0 (Calculation Area). version 4.0 Edu. doi:10.13140/RG.2.1.1501.7689.
[12] ANSYS FLUENT Theory Guide, 2011. INC., ANSYS. ANSYS Help System: release 14.0 [online]. Canonsburg, USA: ANSYS, (1) [cit. 2020-12-08]. https://support.ansys.com/portal/site/AnsysCustomerPortal
[13] M. KrajÄÃk, O. Å ikula, Heat storage efficiency and effective thermal output: Indicators of thermal response and output of radiant heating and cooling systems. ENERGY AND BUILDINGS, 2020, vol. 229, 1-14. ISSN: 0378-7788.